Anxiety disorders and GABA neurotransmission: a disturbance of modulation
نویسنده
چکیده
Lines of evidence coming from many branches of neuroscience indicate that anxiety disorders arise from a dysfunction in the modulation of brain circuits which regulate emotional responses to potentially threatening stimuli. The concept of anxiety disorders as a disturbance of emotional response regulation is a useful one as it allows anxiety to be explained in terms of a more general model of aberrant salience and also because it identifies avenues for developing psychological, behavioral, and pharmacological strategies for the treatment of anxiety disorder. These circuits involve bottom-up activity from the amygdala, indicating the presence of potentially threatening stimuli, and top-down control mechanisms originating in the prefrontal cortex, signaling the emotional salience of stimuli. Understanding the factors that control cortical mechanisms may open the way to identification of more effective cognitive behavioral strategies for managing anxiety disorders. The brain circuits in the amygdala are thought to comprise inhibitory networks of γ-aminobutyric acid-ergic (GABAergic) interneurons and this neurotransmitter thus plays a key role in the modulation of anxiety responses both in the normal and pathological state. The presence of allosteric sites on the GABAA receptor allows the level of inhibition of neurons in the amygdala to be regulated with exquisite precision, and these sites are the molecular targets of the principal classes of anxiolytic drugs. Changes in the levels of endogenous modulators of these allosteric sites as well as changes in the subunit composition of the GABAA receptor may represent mechanisms whereby the level of neuronal inhibition is downregulated in pathological anxiety states. Neurosteroids are synthesized in the brain and act as allosteric modulators of the GABAA receptor. Since their synthesis is itself regulated by stress and by anxiogenic stimuli, targeting the neurosteroid-GABAA receptor axis represents an attractive target for the modulation of anxiety.
منابع مشابه
P145: The Role of γ-Aminobutyric Acid Receptor in The Social Anxiety Disorder
Social anxiety disorder (SAD) is the one of the most common anxiety disorders. Despite its high prevalence, the disorder is still considerably undiagnosed and untreated. The disease places a massive burden on patient’s lives, affecting not only their social interactions but also their educational and professional activities, thereby constituting a severe disability. γ-aminobutyric acid (GABA) s...
متن کاملCerebellar Giant Synaptosomes: a Model to Study Basal and Stimulated Release of [3H]gamma-Aminobutyric Acid
Background: Neurotransmitter release is an essential link in cell communication of the nervous system. Many investigations have focused on gamma amino butyric acid (GABA)-ergic neurotransmission, because it has been implicated in the pathophysiology of several central nervous system disorders. To bypass complications related to homo- and heterosynaptic modulation and to avoid indirect interpret...
متن کاملAnxiolytic Effect of the Hydro-alcoholic Extract of Anethum Graveolens Seed in Adult Female Wistar Rats: Modulation of GABA Receptors
Background: Along with industrial development and the increasing social complexity of societies, anxiety is one of the most prevalent psychological disorders. Medicinal plants are considered as an enrichment source of ingredients with biological activity. Objectives: The aim of this study was to evaluate the anxiolytic effect of Anethum Graveolens seed (AGS) and the possible involvement of Ga...
متن کاملO6: Pathophysiology of Anxiety Disorders
The most important risk factors for anxiety disorders include genes, early life stress, and current stress. These factors do not act independently but interact with each other throughout human development through examples such as epigenetic modifications and complex forms of learning. The neural substrate of pathological anxiety includes hyperactivity in the amygdala and other limbic brain regi...
متن کاملAllosteric modulation of glycine receptors.
Inhibitory (or strychnine sensitive) glycine receptors (GlyRs) are anion-selective transmitter-gated ion channels of the cys-loop superfamily, which includes among others also the inhibitory γ-aminobutyric acid receptors (GABA(A) receptors). While GABA mediates fast inhibitory neurotransmission throughout the CNS, the action of glycine as a fast inhibitory neurotransmitter is more restricted. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 11 شماره
صفحات -
تاریخ انتشار 2015